19 research outputs found

    Bloch Oscillations of Einstein-Podolsky-Rosen States

    Full text link
    Bloch Oscillations (BOs) of quantum particles manifest themselves as periodic spreading and re-localization of the associated wave functions when traversing lattice potentials subject to external gradient forces. Albeit BOs are deeply rooted into the very foundations of quantum mechanics, all experimental observations of this phenomenon so far have only contemplated dynamics of one or two particles initially prepared in separable local states, which is well described by classical wave physics. Evidently, a more general description of genuinely quantum BOs will be achieved upon excitation of a Bloch-oscillator lattice system by nonlocal states, that is, containing correlations in contradiction with local realism. Here we report the first experimental observation of BOs of two-particle Einstein-Podolsky-Rosen states (EPR), whose associated N-particle wave functions are nonlocal by nature. The time evolution of two-photon EPR states in Bloch-oscillators, whether symmetric, antisymmetric or partially symmetric, reveals unexpected transitions from particle antibunching to bunching. Consequently, the initial state can be tailored to produce spatial correlations akin to bosons, fermions or anyons. These results pave the way for a wider class of photonic quantum simulators.Comment: 21 pages, 6 figure

    Femtosecond laser pulse absorption in dielectric materials for ablation

    No full text
    Le micro-usinage de matériaux transparents est aujourd’hui un sujet d’intérêt mondial en recherche appliquée. L’emploi de lasers femtoseconde permet la micro-fabrication de composants optiques et de verres intelligents, ou la réalisation de cellules photovoltaïques. Dans ce contexte, cette thèse expérimentale se concentre sur l’absorption laser résolue en temps et en espace à la surface de matériaux diélectriques irradiés (silice fondue et saphir). Des impulsions femtoseconde (30 − 450 fs) dans l’infrarouge sont utilisées pour étudier l’efficacité de couplage de l’énergie laser pour l’ablation de matériaux dans un régime d’intensité intermédiaire (1-100 TW/cm²) lors de deux expériences. Un schéma pompe-sonde détermine la dynamique du plasma électrontrou à l’échelle femtoseconde et une expérience de déplétion laser mesure l’énergie absorbée. Une étude morphologique du matériau est réalisée, évaluant les seuils d’endommagement et d’ablation ainsi que les morphologies d’ablation. Nous établissons ensuite un bilan d’énergie de l’absorption laser responsable de l’enlèvement de matière. Les densités d’énergie typiques atteintes sont évaluées expérimentalement et confrontées à une modélisation avec propagation. Un excès de dépôt d’énergie par rapport à l’énergie de liaison du matériau au repos est mis en évidence, suggérant qu’un important chauffage du gaz d’électrons libres a lieu. Nous réalisons enfin une interprétation des données avec un regard technologique. Des guides à la réalisation de microsystèmes en régime d’ablation laser femtoseconde sont proposés, et démontrent l’intérêt d’impulsions sous 100 fs pour un procédé photonique.This thesis concerns femtosecond laser absorption in dielectrics in the context of micromachining processes of glass materials. Prospected applications of this technology are optical component micro-fabrication, smart glass manufacturing, or photovoltaic cell patterning. In this context, we focus on the characterization in time and space of the absorption mechanisms occurring at the surface of irradiated dielectric materials (fused silica and sapphire). Using near-IR ultrashort pulses (30 − 450 fs) laser energy coupling efficiency for material ablation is studied at mid-intensities (1-100 TW/cm²) through two experiments. A pump-probe scheme determines the electron-hole plasma dynamics at femtosecond timescale and a laser depletion experiment measures the material absorption. A morphological study of the samples is performed, evaluating the damage and ablation thresholds as well as ablation morphologies. We then establish an energy balance of laser absorption responsible of matter removal. Typical energy densities reached are estimated through experiments and confronted to a propagative model. It is shown that the amount of absorbed energy is far above the bonding energy of the material at rest, suggesting that the major part of the absorbed energy is spent to heat the free electron gas. Finally, we propose a technological analysis of the experimental data. The interest of sub-100 fs laser pulses for photonic processes is evidenced, however at the cost of additional complexity. It provides guidelines for efficient direct laser ablation, making the results relevant for femtosecond processes

    Implementation Of Quantum And Classical Discrete Fractional Fourier Transforms

    No full text
    We report on the experimental realization of quantum and classical discrete fractional Fourier transforms (DFrFT) using photonic lattices. Our approach is fully integrated and free of bulk optical components

    Two-Photon Evolution Equation For Multiport Optical Systems

    No full text
    In this work we demonstrate, theoretically and experimentally, that two-photon probability amplitudes describing propagation of light in any two-photon state are governed by an evolution equation identical to a 2D tight-binding equation. © OSA 2015

    Implementation Of Quantum And Classical Discrete Fractional Fourier Transforms

    No full text
    Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools

    Two-Photon Evolution Equation For Multiport Optical Systems

    No full text
    In this work we demonstrate, theoretically and experimentally, that two-photon probability amplitudes describing propagation of light in any two-photon state are governed by an evolution equation identical to a 2D tight-binding equation. © 2015 OSA
    corecore